f08 — Least-squares and Eigenvalue Problems (LAPACK) f08gfc

1

NAG C Library Function Document

nag dopgtr (f08gfc)

Purpose

nag_dopgtr (f08gfc) generates the real orthogonal matrix (), which was determined by nag dsptrd
(f08gec)) when reducing a symmetric matrix to tridiagonal form.

2

Specification

void nag_dopgtr (Nag_OrderType order, Nag_UploType uplo, Integer n,

3

const double ap[], const double tau[], double q[], Integer pdq, NagError *fail)

Description

nag_dopgtr (f08gfc) is intended to be used after a call to nag dsptrd (f08gec), which reduces a real
symmetric matrix A to symmetric tridiagonal form 7' by an orthogonal similarity transformation:
A =QTQ". nag dsptrd (f08gec) represents the orthogonal matrix @ as a product of n — 1 elementary
reflectors.

This function may be used to generate () explicitly as a square matrix.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_ RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

uplo — Nag_UploType Input
On entry: this must be the same parameter uplo as supplied to nag_dsptrd (f08gec).
Constraint: uplo = Nag_Upper or Nag_Lower.

n — Integer Input
On entry: n, the order of the matrix Q).

Constraint: n > 0.

ap[dim] — const double Input
Note: the dimension, dim, of the array ap must be at least max(1,n x (n+1)/2).

On entry: details of the vectors which define the elementary reflectors, as returned by nag dsptrd
(f08gec).

tau[dim| — const double Input

Note: the dimension, dim, of the array tau must be at least max(1,n — 1).

[NP3645/7] f08gfe.1

f08gfc

6

NAG C Library Manual

On entry: further details of the elementary reflectors, as returned by nag_dsptrd (f08gec).

q[dim] — double Output
Note: the dimension, dim, of the array q must be at least max(1,pdq x n).

If order = Nag_ColMajor, the (7,j)th element of the matrix @ is stored in q[(j — 1) x pdq + ¢ — 1]
and if order = Nag RowMajor, the (i,j)th element of the matrix @ is stored in

q((i — 1) x pdq +j —1].
On exit: the n by n orthogonal matrix Q).

pdq — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array q.

Constraint: pdq > max(1,n).

fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pdq = (value).
Constraint: pdq > 0.

NE_INT 2

On entry, pdq = (value), n = (value).
Constraint: pdq > max(1,n).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

7

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

Accuracy

The computed matrix () differs from an exactly orthogonal matrix by a matrix E such that

1E]l, = O(e),

where ¢ is the machine precision.

8

Further Comments

The total number of floating-point operations is approximately %n3.

The complex analogue of this function is nag zupgtr (f08gtc).

f08gfe.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08gfc

9 Example

To compute all the eigenvalues and eigenvectors of the matrix A, where

2.07 387 420 -1.15

387 —0.21 1.87 0.63

4.20 1.87 1.15 2.06 |’
—1.15 0.63 2.06 —1.81

A=

using packed storage. Here A is symmetric and must first be reduced to tridiagonal form by nag_dsptrd
(f08gec). The program then calls nag_dopgtr (f08gfc) to form (), and passes this matrix to nag_dsteqr
(f08jec) which computes the eigenvalues and eigenvectors of A.

9.1 Program Text

/* nag_dopgtr (f08gfc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer ap_len, i, j, n, pdz, d_len, e_len, tau_len;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char([2];
double *ap=0, *d=0, *e=0, *tau=0, *z=0;

#ifdef NAG_COLUMN_MAJOR

#define A_UPPER(I,J) apl[J*(J-1)/2 + I - 1]

#define A_LOWER(I,J) apl(2*n-J)*(J-1)/2 + I - 1]
order = Nag_ColMajor;

#else

#define A_LOWER(I,J) apl[I*(I-1)/2 + J - 1]

#define A_UPPER(I,J) apl(2*n-I)*(I-1)/2 + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("£f08gfc Example Program Results\n\n");

/* Skip heading in data file */

Vscanf ("s*["\n] ");

Vscanf ("$1d%s*[*\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pdz = n;
#else

pdz = n;
#endif

ap_len = n*(n+l)/2;

tau_len = n-1;

d_len = n;

e_len = n-1;

/* Allocate memory */

if (!(ap = NAG_ALLOC(ap_len, double)) ||
1 (d = NAG_ALLOC(d_len, double)) ||
! (e = NAG_ALLOC(e_1len, double)) ||

[NP3645/7] 08gfe.3

f08gfc NAG C Library Manual

! (tau = NAG_ALLOC(tau_len, double)) ||
1 (z = NAG_ALLOC(n * n, double)))

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

3

/* Read A from data file =*/
Vscanf (" ' %1s ’'%*["\n] ", uplo_char);
if (*(unsigned char *)uplo_char == 'L’)
uplo = Nag_Lower;
else if (*(unsigned char #*)uplo_char == 'U’)
uplo = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
if (uplo == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (3 = 1i; j <= n; ++3)
Vscanf ("$1f", &A_UPPER(i,j));

¥
Vscanf ("s*[*\n] ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (§ = 1; j <= i; ++73)
Vscanf ("$1f", &A_LOWER(i,3));
b
Vscanf ("s*[*\n] ");
}

/* Reduce A to tridiagonal form T = (Q**T)*A*Q */
f08gec(order, uplo, n, ap, 4, e, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from £08gec.\n%s\n", fail.message);
exit_status = 1;
¥

/* Form Q explicitly, storing the result in Z */
f08gfc(order, uplo, n, ap, tau, z, pdz, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f£08gfc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Calculate all the eigenvalues and eigenvectors of A */
f08jec(order, Nag_Updatez, n, d, e, z, pdz, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08jec.\n%s\n", fail.message);
exit_status = 1;
goto END;
3

/* Print eigenvalues and eigenvectors */
Vprintf ("Eigenvalues\n") ;
for (i = 1; 1 <= n; ++1)
Vprintf ("%8.4f%s", d[i-1], 1%8==0 ?"\n":" ");
Vprintf ("\n\n") ;
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, z, pdz,
"Eigenvectors", 0, &fail);

f08gfe.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08gfc

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from xO4cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:
if (ap) NAG_FREE (ap);
if (d) NAG_FREE(Q4);
if (e) NAG_FREE(e);
if (tau) NAG_FREE (tau);
if (z) NAG_FREE(z);

return exit_status;

9.2 Program Data

f08gfc Example Program Data

4 :Value of N
'L’ :Value of UPLO
2.07

3.87 -0.21
4.20 1.87 1.15
-1.15 0.63 2.06 -1.81 :End of matrix A

9.3 Program Results

f08gfc Example Program Results

Eigenvalues
-5.0034 -1.9987 0.2013 8.0008

Eigenvectors

1 2 3 4
1 0.5658 -0.2328 -0.3965 0.6845
2 -0.3478 0.7994 -0.1780 0.4564
3 -0.4740 -0.4087 0.5381 0.5645
4 0.5781 0.3737 0.7221 0.0676

[NP3645/7] 108gfc.5 (last)

	f08gfc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	ap
	tau
	q
	pdq
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

