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NAG C Library Function Document

nag dopgtr (f08gfc)

Purpose

nag_dopgtr (f08gfc) generates the real orthogonal matrix (), which was determined by nag dsptrd
(f08gec)) when reducing a symmetric matrix to tridiagonal form.

2

Specification

void nag_dopgtr (Nag_OrderType order, Nag_UploType uplo, Integer n,

3

const double ap[], const double tau[], double q[], Integer pdq, NagError *fail)

Description

nag_dopgtr (f08gfc) is intended to be used after a call to nag dsptrd (f08gec), which reduces a real
symmetric matrix A to symmetric tridiagonal form 7' by an orthogonal similarity transformation:
A =QTQ". nag dsptrd (f08gec) represents the orthogonal matrix @ as a product of n — 1 elementary
reflectors.

This function may be used to generate () explicitly as a square matrix.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_ RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

uplo — Nag_UploType Input
On entry: this must be the same parameter uplo as supplied to nag_dsptrd (f08gec).
Constraint: uplo = Nag_Upper or Nag_Lower.

n — Integer Input
On entry: n, the order of the matrix Q).

Constraint: n > 0.

ap[dim] — const double Input
Note: the dimension, dim, of the array ap must be at least max(1,n x (n+1)/2).

On entry: details of the vectors which define the elementary reflectors, as returned by nag dsptrd
(f08gec).

tau[dim| — const double Input

Note: the dimension, dim, of the array tau must be at least max(1,n — 1).
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On entry: further details of the elementary reflectors, as returned by nag_dsptrd (f08gec).

q[dim] — double Output
Note: the dimension, dim, of the array q must be at least max(1,pdq x n).

If order = Nag_ColMajor, the (7,j)th element of the matrix @ is stored in q[(j — 1) x pdq + ¢ — 1]
and if order = Nag RowMajor, the (i,j)th element of the matrix @ is stored in

q((i — 1) x pdq +j —1].
On exit: the n by n orthogonal matrix Q).

pdq — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array q.

Constraint: pdq > max(1,n).

fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pdq = (value).
Constraint: pdq > 0.

NE_INT 2

On entry, pdq = (value), n = (value).
Constraint: pdq > max(1,n).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

7

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

Accuracy

The computed matrix () differs from an exactly orthogonal matrix by a matrix E such that

1E]l, = O(e),

where ¢ is the machine precision.

8

Further Comments

The total number of floating-point operations is approximately %n3.

The complex analogue of this function is nag zupgtr (f08gtc).
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9 Example

To compute all the eigenvalues and eigenvectors of the matrix A, where

2.07 387 420 -1.15

387 —0.21 1.87 0.63

4.20 1.87 1.15 2.06 |’
—1.15 0.63 2.06 —1.81

A=

using packed storage. Here A is symmetric and must first be reduced to tridiagonal form by nag_dsptrd
(f08gec). The program then calls nag_dopgtr (f08gfc) to form (), and passes this matrix to nag_dsteqr
(f08jec) which computes the eigenvalues and eigenvectors of A.

9.1 Program Text

/* nag_dopgtr (f08gfc) Example Program.
*

* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer ap_len, i, j, n, pdz, d_len, e_len, tau_len;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char([2];
double *ap=0, *d=0, *e=0, *tau=0, *z=0;

#ifdef NAG_COLUMN_MAJOR

#define A_UPPER(I,J) apl[J*(J-1)/2 + I - 1]

#define A_LOWER(I,J) apl(2*n-J)*(J-1)/2 + I - 1]
order = Nag_ColMajor;

#else

#define A_LOWER(I,J) apl[I*(I-1)/2 + J - 1]

#define A_UPPER(I,J) apl(2*n-I)*(I-1)/2 + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("£f08gfc Example Program Results\n\n");

/* Skip heading in data file */

Vscanf ("s*["\n] ");

Vscanf ("$1d%s*[*\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pdz = n;
#else

pdz = n;
#endif

ap_len = n*(n+l)/2;

tau_len = n-1;

d_len = n;

e_len = n-1;

/* Allocate memory */

if ( !(ap = NAG_ALLOC(ap_len, double)) ||
1 (d = NAG_ALLOC(d_len, double)) ||
! (e = NAG_ALLOC(e_1len, double)) ||
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! (tau = NAG_ALLOC(tau_len, double)) ||
1 (z = NAG_ALLOC(n * n, double)) )

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

3

/* Read A from data file =*/
Vscanf (" ' %1s ’'%*["\n] ", uplo_char);
if (*(unsigned char *)uplo_char == 'L’)
uplo = Nag_Lower;
else if (*(unsigned char #*)uplo_char == 'U’)
uplo = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
if (uplo == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (3 = 1i; j <= n; ++3)
Vscanf ("$1f", &A_UPPER(i,j));

¥
Vscanf ("s*[*\n] ");
}
else
{
for (i = 1; i <= n; ++1i)
{
for (§ = 1; j <= i; ++73)
Vscanf ("$1f", &A_LOWER(i,3));
b
Vscanf ("s*[*\n] ");
}

/* Reduce A to tridiagonal form T = (Q**T)*A*Q */
f08gec(order, uplo, n, ap, 4, e, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from £08gec.\n%s\n", fail.message);
exit_status = 1;
¥

/* Form Q explicitly, storing the result in Z */
f08gfc(order, uplo, n, ap, tau, z, pdz, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f£08gfc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Calculate all the eigenvalues and eigenvectors of A */
f08jec(order, Nag_Updatez, n, d, e, z, pdz, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08jec.\n%s\n", fail.message);
exit_status = 1;
goto END;
3

/* Print eigenvalues and eigenvectors */
Vprintf ("Eigenvalues\n") ;
for (i = 1; 1 <= n; ++1)
Vprintf ("%8.4f%s", d[i-1], 1%8==0 ?"\n":" ");
Vprintf ("\n\n") ;
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n, z, pdz,
"Eigenvectors", 0, &fail);
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if (fail.code != NE_NOERROR)
{
Vprintf ("Error from xO4cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:
if (ap) NAG_FREE (ap);
if (d) NAG_FREE(Q4);
if (e) NAG_FREE(e);
if (tau) NAG_FREE (tau);
if (z) NAG_FREE(z);

return exit_status;

9.2 Program Data

f08gfc Example Program Data

4 :Value of N
'L’ :Value of UPLO
2.07

3.87 -0.21
4.20 1.87 1.15
-1.15 0.63 2.06 -1.81 :End of matrix A

9.3 Program Results

f08gfc Example Program Results

Eigenvalues
-5.0034 -1.9987 0.2013 8.0008

Eigenvectors

1 2 3 4
1 0.5658 -0.2328 -0.3965 0.6845
2 -0.3478 0.7994 -0.1780 0.4564
3 -0.4740 -0.4087 0.5381 0.5645
4 0.5781 0.3737 0.7221 0.0676
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